
NASA / TM--2000-209950

U.S. ARMY

!i!!iiii

RESEARCH LABORATORY

Developing CORBA-Based Distributed

Scientific Applications From Legacy

Fortran Programs

ARL-MR-488

Janche Sang

Cleveland State University, Cleveland, Ohio

Chan Kim

Glenn Research Center, Cleveland, Ohio

Isaac Lopez

U.S. Army Research Laboratory, Glenn Research Center, Cleveland, Ohio

July 2000

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated to

the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key part

in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the
NASA STI Database, the largest collection of

aeronautical and space science STI in the world.
The Program Office is also NASA's institutional

mechanism for disseminating the results of its

research and development activities. These results

are published by NASA in the NASA STI Report
Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant
phase of research that present the results of

NASA programs and include extensive data
or theoretical analysis. Includes compilations

of significant scientific and technical data and

information deemed to be of continuing
reference value. NASA's counterpart of peer-

reviewed formal professional papers but

has less stringent limitations on manuscript
length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or
of specialized interest, e.g., quick release

reports, working papers, and bibliographies
that contain minimal annotation. Does not

contain extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or cosponsored by
NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific
and technical material pertinent to NASA's
mission.

Specialized services that complement the STI

Program Office's diverse offerings include
creating custom thesauri, building customized

data bases, organizing and publishing research
results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page

at http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076

NASA/TMm2000-209950

U,S. ARMY

ARL-MR-488

RESEARCH LABORATORY

Developing CORBA-Based Distributed

Scientific Applications From Legacy

Fortran Programs

Janche Sang

Cleveland State University, Cleveland, Ohio

Chan Kim

Glenn Research Center, Cleveland, Ohio

Isaac Lopez

U.S. Army Research Laboratory, Glenn Research Center, Cleveland, Ohio

Prepared for the

Computational Aerosciences Workshop

sponsored by the High Performance Computing and Communications Program

Moffett Field, California, February 15-17, 2000

National Aeronautics and

Space Administration

Glenn Research Center

July 2000

Acknowledgments

The authors express their appreciation to management of the High Performance Computing and Communications

Program and to the NASA R&T Base Program for supporting NPSS.

Trade names or manufacturers' names are used in this report for

identification only. This usage does not constitute an official

endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

Available from

NASA Center for Aerospace Information
7121 Standard Drive

Hanover, MD 21076
Price Code: A03

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22100
Price Code: A03

Available electronically at http://gltrs.grc.nasa.gov/GLTRS/

DEVELOPING CORBA-BASED DISTRIBUTED SCIENTIFIC

APPLICATIONS FROM LEGACY FORTRAN PROGRAMS

Janche Sang
Cleveland State University

Cleveland, Ohio 44115

Chan M. Kim

Natiol_al Aeronautics and Space Administration
Glenn Research Center

Cleveland, Ohio 44135

Isaac Lopez

U.S. Army Research Laboratory
National Aeronautics and Space Administration

Glenn Research Center

Cleveland, Ohio 44135

SUMMARY

An efficient methodology is presented for integrating legacy applications written in Fortran into a distributed

object framework. Issues and strategies regarding the conversion and decomposition of Fortran codes into Common
Object Request Broker Architecture (CORBA) objects are discussed. Fortran codes are modified as little as possible

as they are decomposed into modules and wrapped as objects. A new conversion tool takes the Fortran application
as input and generates the C/C++ header file and Interface Definition Language (IDL) file. In addition, the

performance of the client server computing is evaluated.

INTRODUCTION

Recent progress in distributed object technology has enabled software applications to be developed and

deployed easily such that objects or components can work together across network boundaries, in different operating
systems, and in different languages. A distributed object is not necessarily a complete application but rather a reusa-
ble, self-contained piece of software that cooperates with other objects in a plug-and-play fashion via a well-defined

interface. The Common Object Request Broker Architecture (CORBA), a middleware standard defined by the

Object Management Group (OMG) (ref. 1), uses the Interface Definition Language (IDL) to specify such an inter-
face for transparent communication between distributed objects. Since IDL can be mapped to any programming

language, such as C++, Java (Sun Microsystems), or Smalltalk, existing applications can be integrated into a new
application and the tasks of rewriting code and maintaining software can be reduced.

In OMG's object model, an object is an encapsulated entity with a distinct immutable identity. Its services can

be accessed only through interfaces defined in IDL (ref. 2). Clients issue requests to objects to perform services on
their behalf, but the implementation and location of each object are hidden from the requesting client. Communica-
tion between clients and objects is provided by the Object Request Broker (ORB), a key component of the CORBA

architecture. Upon compiling an IDL file, the ORB generates the stub and the skeleton through which a client can
invoke a method on a server object, which can be on the same machine or across a network. The ORB is responsible

for finding an object that can implement the request, passing it the parameters, invoking its method, and returning
the results to the client. In this process, the client does not have to be aware of where the object is located, its pro-

gramming language, its operating system, or any other system aspects that are not part of an objects interface.

Since its inception, CORBA has been widely accepted as the middleware standard for distributed object
computing. It relieves distributed application developers of the cumbersome task of dealing with issues due to het-

erogeneous computing environments, and it provides a standards-based interface to facilitate transparent exchange
of management information for computer and communication networks (refs. 3 and 4). TeleMed (ref. 5) is an effort
to demonstrate sharing multimedia electronic medical records over a wide area network. It was designed as a dis-

tributed object system in which the various healthcare components are dealt with as objects and distributed via
the CORBA standard. CORBA-based distributed object technology is considered the key to integrating legacy

applications in highly dynamic business environments (ref. 6). Industry-specific success stories about CORBA

NASA/'rM--2000-209950 1

applicationsarereportedinOMG'swebsite(ref.7).OMG'sDomainTechnicalCommitteeaimsatdeveloping
domain-specificCORBAservicesandtechnologiesinvariousindustries.

ManyscientificapplicationsinaerodynamicsandsolidmechanicsarewritteninFortran.Refittingtheselegacy
FortrancodeswithCORBAobjectscanincreasethecodereusability.Forexample,scientistscouldlinktheirspec-
ificapplicationstoobjectifiedvintageFortranprogramssuchasPartialDifferentialEquationsolvers,inaplug-and-
playfashion.ManystandaloneFortranapplicationsdevelopedtoanalyzetheperformanceofanindividualcompo-
nentoftheengineeringsystemcanbeconvertedtoCORBAobjectsandthencombinedwithotherobjectstodesign
theentiresystem.Reference8documentsattemptstoprovideacollaborativedesignandsimulationenvironment
basedonthisconcept.A CORBA-basedsoftwareenvironmentisdevelopedinreference9.Itcouplestwoindepend-
entlydevelopedcodeswritteninFortranandC++tomodelathermomechanicalproblem.A computationallyinten-
siveFortranapplicationalsocanbedecomposedintoseveralpieces,madeintoCORBAobjects,anddistributed
overseveralmachinestospeedupthecomputation.Unfortunately,CORBA-IDL-to-Fortranmappinghasnotbeen
proposed,andthereseemstobenodirectmethodofgeneratingCORBAobjectsfromFortranwithoutmanually
writingC/C++wrappers.

Inthispaper,wepresentanefficientmethodologytointegrateapplicationswritteninFortranintoadistributed
objectframework.IssuesandstrategiesregardingtheconversionanddecompositionofFortrancodesintoCORBA
objectsarediscussed.OurgoalwastokeeptheFortrancodesunmodifiedasmuchaspossible.Toreducethepro-
grammingeffortincodewrapping,wedesignedandimplementedaconversiontoolthattakestheFortranapplica-
tionprogramasinputandgeneratestheC/C++headerfileandIDLfile.Attheendofthispaper,weevaluatethe
performanceoftheclient-servercomputingandidentifypossiblecommunicationoverhead.

METHODOLOGY

Onemethodofwrappingalegacyapplicationistoencapsulatetheentirelegacycodeintoasingleobject.
Programmersonlyneedtoprovideaserverthatwill invokethewrappedlegacy-codeobjectwhenit receivesa
requestfromaclient.Thisstraightforwardmethodissuitableforsmall-scaleapplicationsthathaveonlyonemodule
orentity.

Forcomplicatedapplications,analternativemethodthatweareinterestedinistodecomposethecodesinto
differentfunctionmodulesandwrapeachmoduleintoadistributedobject.Thismethodcanincreasethecodeusa-
bilitybecauseeachdistributedobjectcanbeinvokedbyadifferentapplicationasaplug-and-playsoftwarecompo-
nent.Figure1showstheconversionanddecompositionmechanismweproposed.Ourobjectivewastokeepmodifi-
cationsoftheFortransourcecodestoaminimum.TheconversiontooltakestheFortranapplicationprogramas
inputandhelpsprogrammersgenerateaC/C++headerfileandanIDLfileforwrappingtheFortrancode.

Inourcurrentenvironment,individualprogrammersneedtodeterminehowtodecomposethelegacyapplica-
tionintoseveralreusablecomponentsonthebasisofthecohesionandcouplingfactorsofthefunctionsandsub-
routines.Inthefuture,weplantoaddananalyzertooltohelpprogrammersextractobjectsfromlegacycodes.
Earlierstudiesinobjectextractioncanbefoundinreferences10and11.Thistopicisbeyondthescopeofthis
paper.

MostFortranapplicationsusetheCOMMONblocktodistributealargenumberofvariablesamongseveral
functions.COMMONblocksplayarolesimilartothatoftheglobalvariablesusedinC.IntheCORBA-compliant
programmingenvironment,globalvariablescannotbeusedtopassvaluesbetweenobjects.Oneapproachtodealing
withsuchproblemistoputtheCOMMONvariablesintotheparameterlist,butthisrequiresextensivemodification
oftheFortransourcecode,whichviolatesourdesignconsiderations.OurapproachistoextracttheCOMMON
blocksandconvertthemintoastructure-typeattributeinC++.Throughtheattributes,eachcomponentcaninitialize
thevariablesandreturnthecomputedresultbacktotheclient.Withourconversiontool,theprogrammingeffortcan
begreatlyreducedbecausefunctionheadings,types,andeventheCOMMONblocksareconvertedtoC++andIDL
styles.

IMPLEMENTATIONISSUES

Theconversiontoolweproposedintheprevioussectionconsistsofaparserandacodegenerator.Theparser
constructsparsingtreesfromtheinputFortrancodes,andthegeneratortranslatesthetreesintoC++/IDLcodes.
Insteadofwritingalanguagetranslatorfromthebeginning,weimplementedtheconversiontoolwithanexisting
Fortran-to-Cconvertercalledf2c(ref.12).Wechosethef2cpackagebecauseit isanopen-sourceprogramandhas
beenwidelyusedinacademicareas.

NASA/TM--2000-209950 2

Thef2cprogramtranslatesFortran77codestoCcodes.Sinceourgoalis to wrap the Fortran codes and provide
the interface for both the client and the server, we only need to use f2c to extract and translate the codes of data

types, variable declarations, and function headings. The function bodies and statements are of no interest to us.
However, the codes converted by f2c do not totally meet the IDL syntactic requirements. For example, IDL requires

a tag in the structure type, whereas C does not. Unfortunately, f2c translates a Fortran COMMON block into a struc-

ture variable in C without a tag. Furthermore, the structure tag can be used as a type to define structure variables in

IDL. In C, it has to put the keyword struct in front of the tag, and this kind of declaration is not allowed in IDL.

The syntactic difference between the C and IDL data structure required some manual editing of the code gener-
ated from f2c in our work. This inconvenience motivated us to modify the f2c program by adding a few codes to

generate the tag for a structure. Figure 2 shows an example of Fortran codes with the declarations of the COMMON

blocks cgcon and di sp. The corresponding codes in IDL, as translated by the modified f2c program (f2CORBA),

are shown in figure 3.
Like the example shown in figure 2, most Fortran applications have several COMMON blocks. After decom-

posing the application into a few CORBA objects, the problem of passing the structure variables (i.e., COMMON
blocks) to several servers needs to be solved. Our current approach is to merge all the structures into another

structure (e.g., lu_tag in fig. 3) and use an attribute (e.g., lu_all in fig. 3) to facilitate data transfer.

This approach is based on the assumption that each server needs to access all the COMMON blocks. However,
some servers may access only parts of them. A graphical user interface (GUI) to ease the conversion task has been

partially developed. Programmers will be able to simply click on an item to select a structure variable from a list box
to be a member in a structure-type attribute (see fig. 4). To implement the GUI interface, we are using the tool
Tcl/Tk (ref. 13) because of its availability and portability. Tcl/Tk can be downloaded from the World Wide Web

(ref. 14) and has been used on most operating system platforms, including UNIX, Windows NT (Microsoft Corp.),

and Macintosh (Apple Corp.). Furthermore, most programmers can learn the fundamentals of Tcl/Tk and write

script programs to do real work in a few days.
We have successfully tested the proposed conversion methodology on different CORBA packages: VisiBroker

C++ (Inprise/Borland Corp., ref. 15) and MICO (ref. 16). Because of availability and portability, we prefer using

MICO rather than VisiBroker C++. For example, VisiBroker C++, a commerical software program, only works

with a Sparcworks C++ (Sun Microsystems) compiler on Sun Sparc or Ultra (Sun Microsystems) platforms. MICO,
a public-domain ORB with a complete CORBA compliant implementation, relies on the GNU package and, hence,

can be ported easily to almost any platform, including Solaris, LINUX, and Windows NT.

PERFORMANCE MEASUREMENTS

To investigate the overhead produced in distributed object computing, we selected the LU and BT benchmarks
from the NAS Parallel Benchmarks (NPB) suite (ref. 17). These benchmarks, which were devised by the Numerical

Aerodynamics Simulation (NAS) program at the NASA Ames Research Center, have been used widely to study the

performance of parallel computing. For example, we used the benchmarks to evaluate the performance of a cluster
of 32 Intel P6 (Intel Corp.) workstations that were connected by a two-level tree-structure network (ref. 18). The
NPB 2.3 benchmarks are a set of eight problems consisting of five kernels that highlight specific areas of machine

performance and three pseudoapplications that simulate computational fluid dynamics (CFD). Brief descriptions of
the LU and BT benchmarks follow:

• Application LU solves a finite difference discretization of the three-dimensional compressible Navier-

Stokes equations by using a symmetric successive over-relaxation (SSOR) numerical scheme.

• Application BT is based on a Beam-Wanning approximate factorization that decouples the x, y, and _-

dimensions, resulting in three sets of narrow-banded, regularly structured systems of linear equations.

We used the sample-size serial version of the LU and BT benchmarks (NPB2.3-serial) and decomposed each
benchmark into two server objects. The client needed to contact these two servers one after the other to accomplish

the task. The experiments were performed on a pair of Sun Ultra computers (170-MHz, 128-MB) running Solaris
2.6 (Sun Microsystems) and also on a pair of Intel P6 computers (400-MHz, 512-MB) running LINUX kernel
2.2.12. The clients and servers were connected through a 100BaseT local area network (LAN).

Tables I and II show the breakdown of the elapsed time for running the benchmarks LU and BT, respectively.

For comparison, we also ran the original programs. The results show that the time for service binding is small.
However, the communication overhead, including the time for marshaling and unmarshaling data between the client

and the servers, cannot be ignored.

NASA/TM--2000-209950 3

CONCLUSION

ManyscientificapplicationsinaerodynamicsandsolidmechanicsarewritteninFortran. Refitting these legacy
Fortran codes with Common Object Request Broker Architecture (CORBA) objects can increase the code reusabil-

ity. In this paper, we have presented a methodology to integrate Fortran legacy programs into a distributed object

framework. Issues and strategies regarding the conversion and decomposition of Fortran codes into CORBA objects
have been discussed. We also have implemented a conversion tool that takes the Fortran application program as

input and generates the C/C++ header file and the Interface Definition Language (IDL) file. The tedious program-
ming tasks for wrapping the codes can, therefore, be reduced, In the future, we plan to add more user-friendly

graphical user interfaces and to provide an analyzer tool to help programmers easily extract objects from legacy
applications.

REFERENCES

1. Object Management Group: The Common Object Request Broker: Architecture and Specification, 2.3 edition.
June 1999.

2. Vinoski, S.: CORBA: Integrating Diverse Applications Within Distributed Heterogeneous Environments. IEEE
Commun., vol. 35, Feb. 1997, pp. 46-55.

3. Haggerty, P.: and Seetharaman, K.: The Benefits of CORBA-Based Network Management. Communications of
the ACM, vol. 41, Oct. 1998, pp. 73-79.

4. Pavon, J.. et al.: CORBA for Network and Service Management in the TINA Framework. IEEE Commun.,
vol. 36, Mar. 1998, pp. 72-79.

5. Forslund, J., et al.: TeleMed: Development of a Java/CORBA-based Virtual Electronic Medical Record.

Proceedings of the PacMedTek Symposium, Aug. 1998.

6. Sun Microsystems, Inc.: Distributed Object Technology in the Financial Services Industry, White Paper, last
modified 1995. http://www.sun.com/software/solutions/third-party/software/whitepapers[Accessed May 18,
2000.

7. OMG, last modified 2000. http://www.omg.org Accessed after June 1999.

8. Lytle. J.: The Numerical Propulsion System Simulation: A Multidisciplinary Design System for Aerospace
Vehicles, NASA/TM--1999-209194, 1999. http://eltrs.grc.nasa.gov/cgi-bin/GLTRSforowse.pl?/1999frM-

1999-209194.html (Also, Proceedings of the 14th International Symposium on Air Breathing Engines
sponsored by the Intemational Society for Air Breathing Engines, Sep. 1999.)

9. Sandia National Lab (Summers, R.M.; Peery, J.S.; Hogan, R.E.; Holmes, V.P.; and Miller, D.J.): Coupling
Finite Element Codes Using CORBA-Based Environments, last modified Jan. 4, 1996.

http:[/www.cs.sandia.gov]HPCCIT[corba[impres.html Accessed May 18, 2000.
10. Achee, B.L.: and Carver, D.L.: Creating Object-Oriented Designs From Legacy Fortran Code. J. Syst. Software,

vol. 39, 1997, pp. 179-194.

11. Ong, C.; and Tsai, T.: Class and Object Extraction from Imperative Code. J. Object-Oriented Prog., Mar./Apr.
1993, pp. 58--68.

12. Feldman, S.I., et al.: A Fortran-to-C Converter. Technical Report No. 149, Bell Laboratories, NJ. 1995.
13. Ousterhout, J.: Tci and the Tk Toolkit. Addison-Wesley, Reading, MA, 1994.

14. Tcl/Tk 8.3.1 Download, last modified March 3, 2000. http:[/dev.scriptics.com[soflware[tcltk]download83.html
Accessed May 9, 2000.

15. Inprise, Corp.: VisiBroker for C++: Programmer's Guide, Version 3.3, 1999.

16. R6mer, K.; Puder, A.: and Pilhofer, F.: MICO is CORBA, last modified Feb. 9, 1997. http://www.mico.org
Accessed May 18, 2000.

17. Bailey, D., et al.: The NAS Parallel Benchmarks 2.0. Technical report, NAS-95-020, NASA Ames Research
Center. 1995.

18. Sang, J., et al.: High-Performance Cluster Computing Over Gigabit/Fast Ethernet. Informatica, vol. 23, 1999.

NASA/TM--2000-209950 4

TABLE I.--BREAKDOWN OF ELAPSED TIME FOR RUNNING THE CLIENT-SERVER BENCHMARK LU

Benchmark LU Elapsed time, sec
Traditional One client, two servers

Sun Ultra
PC LINUX

Computation Total Binding
2.99 3.05 0.046
1.51 1.58 .019

Computation Communication Total
2.99 0.33 3.37
1.51 .19 1.72

TABLE II.--BREAKDOWN OF ELAPSED TIME FOR RUNNING THE CLIENT-SERVER BENCHMARK BT

Benchmark BT Elapsed time, sec

Sun Ultra
PC LINUX

Traditional One client, two servers

Computation Total Bindin_ Computation Conmmnication Total
6.99 7.25 0.047 6.99 2.12 9.16
4.16 4.35 .019 4.16 1.38 5.73

Fortran application

I COMMON variables

CORBA Object1

C/C++ wrapper

COMMO i variables.

attribute

_CORBA Object2

_ __C/C++ wrapper

attribute

Figure 1 .--Functional diagram of f2CORBA conversion tool. CORBA, Common

Object Request Broker Architecture; IDL, Interface Definition Language.

NASA/TM--2000-209950 5

integer nx, ny, nz

integer nxO, nyO, nzO

double precision dxi, deta, dzeta

double precision txl, tx2, tx3

double precision tyl, ty2, ty3

common/cgcon/ dxi, deta, dzeta,

> txl, tx2, tx3,

> tyl, ty2, ty3, ...

> nx, ny, nz,

> nxO, nyO, nzO,

double precision dxl, dx2, dx3, dx4, dx5

double precision dyl, dy2, dy3, dy4, dy5

common/disp/ dxl, dx2, dx3, dx4, dx5,

> dyl, dy2, dy3, dy4, dy5,

Figure 2.--OnginalFo_ran codes with COMMON
block variables.

struct cgcon_tag {

double dxi, deta, dzeta, txl, tx2, tx3, tyl, ty2, ty3, . . . ;

integer nx, ny, nz, nxO, nyO, nzO ;

};
struct disp_tag {

double dxl, dx2, dx3, dx4, dx5, dyl, dy2, dy3, dy4, dy5 ;

};

struct lu tag {

cgcon_t ag cgcon_;

disp_t ag disp_;

};
interface Lul {

attribute lu_tag lu_all;

void lul_comp () ;

};
interface Lu2 {

attribute lu_tag lu_all;

void lu2_comp () ;

};

Figure 3._onverted codes in Interface Definition Language (IDL).

NASA/TM--2000-209950 6

Figure 4.mGraphical user interface for structure
variable selection.

NASA/TM--2000-209950 7

REPORT DOCUMENTATION PAGE FormApproved
OMBNo.0704-0188

Public reporling burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of inlormation. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reporls, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 13. REPORT TYPE AND DATES COVERED

July 2000 [Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Developing CORBA-Based Distributed Scientific Applications

From Legacy Fortran Programs

6. AUTHOR(S)

Janche Sang, Chan Kim, and Isaac Lopez

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

John H. Glenn Research Center at Lewis Field

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laborato_,

Cleveland, Ohio 44135-3191

and

NASA Glenn Research Center

Cleveland, Ohio 44135-3191

WU-509-10-24-00

8. PERFORMING ORGANIZATION

REPORT NUMBER

E-12204

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM--2000-209950

ARL-MR--488

11. SUPPLEMENTARY NOTES

Prepared for the Computational Aerosciences Workshop sponsored by the High Performance Computing and Communications Program,

Moffett Field, California, February 15-17, 2000. Janche Sang, Cleveland State University, Department of Computer and Information

Science, Cleveland, Ohio 44115: Chart Kim, NASA Glenn Research Center: and Isaac Lopez, U.S. Army Research Laboratory, Glenn

Research Center, Cleveland, Ohio 44135. Responsible person, Isaac Lopez, organization code 2900, (216t 433-5893.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Categories: 01 and 61 Distribution: Nonstandard

This publication is available from the NASA Center for AeroSpace Information, (301) 621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

An efficient methodology is presented for integrating legacy applications written in Fortran into a distributed object

framework. Issues and strategies regarding the conversion and decomposition of Fortran codes into Common Object

Request Broker Architecture (COBRA) objects are discussed. Fortran codes are modified as little as possible as they

are decomposed into modules and wrapped as objects. A new conversion tool takes the Fortran application as input and

generates the C/C++ header file and Interface Definition Language (IDL) file. In addition, the performance of the client

server computing is evaluated.

14. SUBJECT TERMS

CORBA; Fortran

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

13

16. PRICE CODE

A03

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

